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Summary
Studies of protein evolution typically take a coarse view of 
protein function. Here I take a much finer view, using detailed 
mechanistic models to measure the influence of each constituent 
protein on its network’s dynamics.

 I show that a protein’s dynamical influence and its 
evolutionary rate are negatively correlated, implying purifying 
selection on network dynamics. Correlation coefficients are 
typically of order -0.3, among the strongest known correlates of 
evolutionary rate. Moreover, this correlation is independent of 
interaction degree, expression level, and knock-out essentiality.

Dynamical influence

The inclusive measure of dynamics, χ2, sums over all dynamical 
species in the network [Gutenkunst (2007)].

The dynamical influence κi of parameter i is (see Figure 1A)

The dynamical influence  of a protein is the mean influence of 
parameters governing reactions the protein participates in. 

For example, in the network shown in Figure 1B the influence 
of Ras incorporates all the highlighted reactions.

Evolutionary rate
Maximum-likelihood dN/dS values were inferred with PAML, 
using alignments and sequences from Homologene and 
GenBank. 
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Figure 1 - Dynamical influence

Data

I tested all models in the BioModels database possessing 8 or 
more species annotated with Uniprot identifiers. Results are 
shown in Figure 3. As seen, for 9 out of 10 models there is a 
negative correlation between evolutionary rate and dynamical 
influence. Individual p-values are not dramatic, because model 
development is inherently low-throughput. However, it is 
compelling that so many systems show the expected correlation. 

 Note, the first 5 models all include an experimentally 
manipulated protein ligand, which I have removed from these 
analyses. I also omit the influence of multi-protein complexes, 
as it is not annotated which protein in a complex is active for 
each reaction. p-values are from one-sided permutation tests.

Other potential correlates
It is known that protein evolutionary rates correlate with 
number of interaction partners (interaction degree), level of 
expression, and knock-out gene essentiality. I use the number of 
reactions R a protein is involved in (including complexes) as a 
proxy for interaction degree. I use the total amount X of a 
protein in the model as a proxy for expression. Essentiality in 
mouse K is measured using knock-out data from the Mouse 
Genome Database. Table 1 compares the correlations with and 
without controlling for these variables. It can be seen that these 
variables typically have little influence on the strength of 
correlation.

Table 1 - Correlations and partial correlations
Model  (p-val)

Birtwistle (2007) -0.24 (0.20) 0.21 0.14 -0.31
Brown (2004) -0.51 (0.04) -0.38 -0.64 -0.56

Sasagawa (2005) -0.45 (0.01) -0.45 -0.46 0.21
Ung (2008) -0.10 (0.32) -0.15 -0.07 -0.47

Singh (2006) -0.31 (0.16) -0.35 -0.48 -0.36
Kim (2007) -0.32 (0.17) -0.34 -0.36 -0.25

Haberichter (2007) -0.31 (0.19) -0.50 -0.69 -0.10
Maeda (2006) -0.20 (0.26) -0.18 -0.22 -0.22
Yang (2007) -0.53 (0.06) -0.54 -0.65 -0.15
Neves (2008) 0.42 (0.87) 0.60 0.55 0.35
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Figure 3 - Correlation in real networks

Figure 2 - Species Used

Knock-out essentiality in mouse:
 -essential -nonessential -no data
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